IDC User Guide
  • Welcome!
  • 🚀Getting started
  • Core functions
  • Frequently asked questions
  • Support
  • Key pointers
  • Publications
  • IDC team
  • Acknowledgments
  • Jobs
  • Data
    • Introduction
    • Data model
    • Data versioning
    • Organization of data
      • Files and metadata
      • Resolving CRDC Globally Unique Identifiers (GUIDs)
      • Clinical data
      • Organization of data, v2 through V13 (deprecated)
        • Files and metadata
        • Resolving CRDC Globally Unique Identifiers (GUIDs)
        • Clinical data
      • Organization of data in v1 (deprecated)
    • Downloading data
      • Downloading data with s5cmd
    • Data release notes
    • Data known issues
  • Tutorials
    • Portal tutorial
    • Python notebook tutorials
    • Slide microscopy
      • Using QuPath for visualization
  • DICOM
    • Introduction to DICOM
    • DICOM data model
    • Original objects
    • Derived objects
      • DICOM Segmentations
      • DICOM Radiotherapy Structure Sets
      • DICOM Structured Reports
    • Coding schemes
    • DICOM-TIFF dual personality files
    • IDC DICOM white papers
  • Portal
    • Getting started
    • Exploring and subsetting data
      • Configuring your search
      • Exploring search results
      • Data selection and download
    • Visualizing images
    • Proxy policy
    • Viewer release notes
    • Portal release notes
  • API
    • Getting Started
    • IDC API Concepts
    • Manifests
    • Accessing the API
    • Endpoint Details
    • V1 API
      • Getting Started
      • IDC Data Model Concepts
      • Accessing the API
      • Endpoint Details
      • Release Notes
  • Cookbook
    • Colab notebooks
    • BigQuery
    • Looker dashboards
      • Dashboard for your cohort
      • More dashboard examples
    • ACCESS allocations
    • Compute engine
      • 3D Slicer desktop VM
      • Using a BQ Manifest to Load DICOM Files onto a VM
      • Using VS Code with GCP VMs
      • Security considerations
    • NCI Cloud Resources
Powered by GitBook
On this page
  • Publications by the IDC team
  • Publications referencing IDC (a subset)

Was this helpful?

Edit on GitHub
Export as PDF

Publications

PreviousKey pointersNextIDC team

Last updated 3 months ago

Was this helpful?

Publications by the IDC team

  1. Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023).

  2. Weiss, J., Bernatz, S., Johnson, J., Thiriveedhi, V., Mak, R. H., Fedorov, A., Lu, M. T. & Aerts, H. J. W. Opportunistic assessment of steatotic liver disease in lung cancer screening eligible individuals. J. Intern. Med. (2025).

  3. Thiriveedhi, V. K., Krishnaswamy, D., Clunie, D., Pieper, S., Kikinis, R. & Fedorov, A. Cloud-based large-scale curation of medical imaging data using AI segmentation. Research Square (2024).

  4. Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S., Aerts, H. J. W. L., Homeyer, A., Lewis, R., Akbarzadeh, A., Bontempi, D., Clifford, W., Herrmann, M. D., Höfener, H., Octaviano, I., Osborne, C., Paquette, S., Petts, J., Punzo, D., Reyes, M., Schacherer, D. P., Tian, M., White, G., Ziegler, E., Shmulevich, I., Pihl, T., Wagner, U., Farahani, K. & Kikinis, R. NCI Imaging Data Commons. Cancer Res. 81, 4188–4193 (2021).

  5. Gorman, C., Punzo, D., Octaviano, I., Pieper, S., Longabaugh, W. J. R., Clunie, D. A., Kikinis, R., Fedorov, A. Y. & Herrmann, M. D. Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology. Nat. Commun. 14, 1–15 (2023).

  6. Bridge, C. P., Gorman, C., Pieper, S., Doyle, S. W., Lennerz, J. K., Kalpathy-Cramer, J., Clunie, D. A., Fedorov, A. Y. & Herrmann, M. D. Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology. J. Digit. Imaging 35, 1719–1737 (2022).

  7. Schacherer, D. P., Herrmann, M. D., Clunie, D. A., Höfener, H., Clifford, W., Longabaugh, W. J. R., Pieper, S., Kikinis, R., Fedorov, A. & Homeyer, A. The NCI Imaging Data Commons as a platform for reproducible research in computational pathology. Comput. Methods Programs Biomed. 107839 (2023). doi:

  8. Krishnaswamy, D., Bontempi, D., Thiriveedhi, V., Punzo, D., Clunie, D., Bridge, C. P., Aerts, H. J., Kikinis, R. & Fedorov, A. Enrichment of the NLST and NSCLC-Radiomics computed tomography collections with AI-derived annotations. arXiv [cs.CV] (2023). at <>

  9. Bontempi, D., Nuernberg, L., Pai, S., Krishnaswamy, D., Thiriveedhi, V., Hosny, A., Mak, R. H., Farahani, K., Kikinis, R., Fedorov, A. & Aerts, H. J. W. L. End-to-end reproducible AI pipelines in radiology using the cloud. Nat. Commun. 15, 6931 (2024).

  10. Krishnaswamy, D., Bontempi, D., Thiriveedhi, V. K., Punzo, D., Clunie, D., Bridge, C. P., Aerts, H. J. W. L., Kikinis, R. & Fedorov, A. Enrichment of lung cancer computed tomography collections with AI-derived annotations. Sci. Data 11, 1–15 (2024).

  11. Murugesan, G. K., McCrumb, D., Aboian, M., Verma, T., Soni, R., Memon, F., Farahani, K., Pei, L., Wagner, U., Fedorov, A. Y., Clunie, D., Moore, S. & Van Oss, J. The AIMI Initiative: AI-Generated Annotations for Imaging Data Commons Collections. arXiv [eess.IV] (2023). at

Publications referencing IDC (a subset)

See the full list, as curated by Google Scholar, .

  1. Pai, S., Bontempi, D., Hadzic, I., Prudente, V., Sokač, M., Chaunzwa, T. L., Bernatz, S., Hosny, A., Mak, R. H., Birkbak, N. J. & Aerts, H. J. W. L. Foundation model for cancer imaging biomarkers. Nature Machine Intelligence 6, 354–367 (2024).

  2. Murugesan, G. K., McCrumb, D., Aboian, M., Verma, T., Soni, R., Memon, F. & Van Oss, J. The AIMI initiative: AI-generated annotations for imaging data commons collections. arXiv [eess.IV] (2023). at <>

  3. Kulkarni, P., Kanhere, A., Yi, P. H. & Parekh, V. S. Text2Cohort: Democratizing the NCI Imaging Data Commons with natural language cohort discovery. arXiv [cs.LG] (2023). at <>

  4. Jiang, P., Sinha, S., Aldape, K., Hannenhalli, S., Sahinalp, C. & Ruppin, E. Big data in basic and translational cancer research. Nat. Rev. Cancer 22, 625–639 (2022).

  5. Schapiro, D., Yapp, C., Sokolov, A., Reynolds, S. M., Chen, Y.-A., Sudar, D., Xie, Y., Muhlich, J., Arias-Camison, R., Arena, S., Taylor, A. J., Nikolov, M., Tyler, M., Lin, J.-R., Burlingame, E. A., Human Tumor Atlas Network, Chang, Y. H., Farhi, S. L., Thorsson, V., Venkatamohan, N., Drewes, J. L., Pe’er, D., Gutman, D. A., Herrmann, M. D., Gehlenborg, N., Bankhead, P., Roland, J. T., Herndon, J. M., Snyder, M. P., Angelo, M., Nolan, G., Swedlow, J. R., Schultz, N., Merrick, D. T., Mazzili, S. A., Cerami, E., Rodig, S. J., Santagata, S. & Sorger, P. K. MITI minimum information guidelines for highly multiplexed tissue images. Nat. Methods 19, 262–267 (2022).

  6. Wahid, K. A., Glerean, E., Sahlsten, J., Jaskari, J., Kaski, K., Naser, M. A., He, R., Mohamed, A. S. R. & Fuller, C. D. Artificial intelligence for radiation oncology applications using public datasets. Semin. Radiat. Oncol. 32, 400–414 (2022).

  7. Hartley, M., Kleywegt, G. J., Patwardhan, A., Sarkans, U., Swedlow, J. R. & Brazma, A. The BioImage Archive - Building a Home for Life-Sciences Microscopy Data. J. Mol. Biol. 167505 (2022). doi:10.1016/j.jmb.2022.167505

  8. Diaz-Pinto, A., Alle, S., Nath, V., Tang, Y., Ihsani, A., Asad, M., Pérez-García, F., Mehta, P., Li, W., Flores, M., Roth, H. R., Vercauteren, T., Xu, D., Dogra, P., Ourselin, S., Feng, A. & Cardoso, M. J. MONAI Label: A framework for AI-assisted interactive labeling of 3D medical images. arXiv [cs.HC] (2022). at <>

https://doi.org/10.1148/rg.230180
https://doi.org/10.1111/joim.20053
https://doi.org/10.21203/rs.3.rs-4351526/v1
http://dx.doi.org/10.1158/0008-5472.CAN-21-0950
http://dx.doi.org/10.1038/s41467-023-37224-2
http://dx.doi.org/10.1007/s10278-022-00683-y
10.1016/j.cmpb.2023.107839
http://arxiv.org/abs/2306.00150
http://dx.doi.org/10.1038/s41467-024-51202-2
https://www.nature.com/articles/s41597-023-02864-y
http://arxiv.org/abs/2310.14897
here
https://www.nature.com/articles/s42256-024-00807-9
http://arxiv.org/abs/2310.14897
http://arxiv.org/abs/2305.07637
http://dx.doi.org/10.1038/s41568-022-00502-0
http://dx.doi.org/10.1038/s41592-022-01415-4
http://dx.doi.org/10.1016/j.semradonc.2022.06.009
http://dx.doi.org/10.1016/j.jmb.2022.167505
http://arxiv.org/abs/2203.12362